Figure 1: Frequency estimators of annual male lung cancer mortality rates per 100,000 population by age group, county and period for the State of Missouri.
Figure 2: Posterior densities of θ_j and μ_j, $j = 1, 2, 3, 4$.
Figure 3: Posterior densities of $\delta_0, \delta_1, \delta_2$.
Figure 4: Posterior densities of ρ_1, ρ_2.
Figure 5: Effects of ρ_1 and ρ_2 on Z_i and W_i, $j = 1, 2, 3, 4$.

- (a) Z_i vs. Z_i ($\rho_1 = 0$)
- (b) W_i vs. W_i ($\rho_1 = 0$)
- (c) Z_i vs. Z_i ($\rho_2 = 0$)
- (d) W_i vs. W_i ($\rho_2 = 0$)
- (e) Z_i vs. Z_i ($\rho_1 = \rho_2 = 0$)
- (f) W_i vs. W_i ($\rho_1 = \rho_2 = 0$)
$p_{ijk} \times 10^5 / 5$

$(\rho_1 = \rho_2 = 0)$

Figure 6. Effect of ρ_1 and ρ_2 on p_{ijk}.
Figure 7. Convergence diagnostic of a set of 10 parameters using three initial values.
Figure 8: Bayesian estimators (posterior means) of annual male lung cancer mortality rates per 100,000 population by age group, county and period for the State of Missouri.
Figure 9: Estimators of county effects: (a) for the relative risk $\exp(Z_i)$ and (b) for the slope W_i.
Figure 10: Maps of extra variation effects, ϵ_{ijk}, for fixed age group j and time period k.