1. Ferguson, Chapter 14, Problem 1.
 Also (e). The logistic distribution with density \(f(x) = e^{-(x-\theta)/(1 + e^{-(x-\theta)})^2} \), where \(\theta \) is a fixed real parameter.

2. Ferguson, Chapter 15, Problem 4.

3. Let \(X_1, \ldots, X_n \) be a sample from the Pareto distribution with density \(f(x \mid \theta) = \theta/((x + \theta)^2) \) for \(x > 0 \). For fixed \(0 < p < 1 \), let \(x_p(\theta) \) denote the \(p \)th quantile of the distribution, and let \(X_{(np)} \) denote the sample \(p \)th quantile.
 (a) What is the asymptotic distribution of \(X_{(np)} \) as \(n \to \infty \)?
 (b) Find a constant \(c(p) \) such that \(\hat{\theta}_n = c(p)X_{(np)} \) is a consistent, asymptotically unbiased estimate of \(\theta \). For what value of \(p \) is the asymptotic variance of \(\theta_n \) a minimum?
 (c) Find the asymptotic distribution of \(M_n = \max(X_1, \ldots, X_n) \).

4. Suppose that \(F(x) = \Phi(x - \mu) \) in Example 6 of Chapter 14, so that we are sampling from a normal \((\mu, 1)\) distribution.
 (a) Find the asymptotic distribution of \(M_n \).
 (b) Show that \(\hat{\mu}_n \) is a consistent estimate of \(\mu \). That is
 \[\hat{\mu}_n = M_n - \sqrt{2\log n} \overset{P}{\to} \mu. \]
 What is its asymptotic efficiency relative to \(\bar{X}_n \)?
 (c) Let \(m_n = \min\{X_1, \ldots, X_n\} \). Show that
 \[m_n + \sqrt{2\log n} \overset{P}{\to} \mu. \]
 (d) Let \(\tilde{\mu}_n = (m_n + M_n)/2 \). Show that \(\tilde{\mu}_n \) is a consistent estimate of \(\mu \). What is its asymptotic efficiency relative to \(\bar{X}_n \)?

5. Use R or Splus (or a language of your choice) to conduct a simulation of limiting extreme value distributions. In class and homework, we found constants \(a_n \) and \(b_n \) such that \((M_n - a_n)/b_n \overset{L}{\to} G(x) \) for some \(G \). For a given sample size \(n \), generate a large number of samples (\(N \) samples) from a base distribution, and compute the sample maximum \(M_n \) for each one. Then plot the histogram or density estimate of the \((M_n - a_n)/b_n \).
 You might take \(N = 1000 \) and try this for \(n = 50, 200, \ldots \). Use the following distributions.
 (a) Standard normal (See Problem 4, when \(\mu = 0 \)).
 (b) Logistic (See Problem 1 (e), when \(\theta = 0 \)).

 You can experiment with different choices of \(n \) and \(N \). The goal is to see how large a sample is needed for the asymptotics to take effect.