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Glossary

Bayesian Inference: A statistical philosophy based on Bayes’ theorem, which ac-

knowledges uncertainty about parameter values by assuming those parameters to be

random variables with prior distributions. Inference is based on the conditional dis-

tribution of the parameters given the data, a quantity referred to as the posterior

distribution.

BLUP: Best Linear Unbiased Predictor.

Cokriging: Kriging applied to 2 or more variables.

Gibbs Sampling: A type of MCMC algorithm.

Isotropy: A property of spatial processes that are rotationally invariant. If a process

is not isotropic it is said to be anisotropic.

Kriging: Geostatistical term for best linear unbiased spatial prediction.

Lattice: A fixed network of spatial locations.

Stationary: The property of translation invariance of the moment structure of a

random process.

Variogram: A description of spatial dependence, primarily for intrinsically station-

ary spatial processes.

MCMC: Markov Chain Monte Carlo; A Monte Carlo procedure that involves suc-

cessive simulations from a Markov chain constructed in a fashion that permits the

assertion that its stationary distribution coincides with the target distribution.

MLE: Maximum Likelihood Estimator (or Estimation)

REML: Restricted Maximum Likelihood.

Summary

Spatial modeling is increasingly prominent in the biological sciences as scientists at-

tempt to characterize variability of processes that are spatially indexed. This article

shows that the mixed model framework is useful for characterizing spatial statistical

methodology. In particular, the classical geostatistical approach known as kriging

can be cast as a linear mixed model. Furthermore, the generalized linear mixed

model provides a natural framework for extending the methodology to allow mod-

eling of non-Gaussian spatial processes. The mixed model framework is also useful

for describing multivariate spatial models and many spatiotemporal models. These

are discussed in the article as well as specific issues related to covariance modeling,

estimation and prediction, computation, and Bayesian methodologies.
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1 Introduction

Since its inception as a discipline, statistics has provided tools by which scientists can

better understand complex processes. Primarily this is because statistics is concerned

with the study of variability, and all natural processes exhibit variability. As scientists

seek to answer ever more challenging questions concerning processes that vary over

space, the traditional statistics methods that one might learn in introductory statistics

courses are not sufficient to adequately account for this variability. However, at least

in principle, relatively simple extensions to simple statistical concepts such as linear

models and regression, provide the foundation for basic spatial statistical analysis.

Although not universally true, objects in close proximity are more alike. Conse-

quently, one must include the effects of spatial proximity when performing statistical

inference on such processes, or at least show that there is no need to do so. Including

these spatial effects is important for efficient estimation of parameters, prediction,

and the design of sampling networks. As a simple illustration, consider some spatial

process, denoted by Y , at three locations, A,B,C such that A and B are very close

together in space (i.e., adjacent plots in a field trial) and C is widely separated from

both A and B. Assume the spatial process has zero mean and variance σ2 at all spa-

tial locations. It is then the case that var[Y (A) − Y (B)] = 2σ2 − 2cov[Y (A), Y (B)]

and var[Y (A) − Y (C)] = 2σ2 − 2cov[Z(A), Z(C)]. If the covariance is positive

and decreases with distance (that is, things close together are more alike), then

cov[Y (A), Y (B)] > cov[Y (A), Y (C)] and thus var[Y (A)−Y (B)] < var[Y (A)−Y (C)].

Clearly, inference on the differences should include the effects of the spatial depen-

dence. Such effects of spatial dependence in statistical inference have been known for

a very long time. In fact, one of the arguments in favor of randomization for agri-

cultural field trials is to mitigate the effects of such dependence. However, in many

environmental and biological applications, one typically considers observational stud-

ies in which randomization is not a viable option. It is in these situations that one

seeks to model the spatial dependence through the use of random field models.

The later twentieth century and beginning of the twenty-first century has seen a

tremendous growth in spatial statistical methodological development and application.

This is primarily a function of the rapid progression of computational technology,

hardware, software and algorithmic, and the need to solve challenging problems. The

corresponding propagation of Bayesian methodology into mainstream statistics has

been responsible for a sizeable portion of this development. Although there is still

an undercurrent of tension between traditional frequentist proponents and Bayesian
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proponents, most practicing statisticians recognize the advantages and disadvantages

of both views and approach spatial modeling from a pragmatic perspective, using the

methodology appropriate for the given problem. Thus, in this article, we consider a

broad range of methodologies from both traditional and Bayesian perspectives.

Kriging and its derivatives constitute the most common class of spatial models

used in diverse disciplines such as crop and soil science, geology, atmospheric science,

and more recently in ecology and the biological sciences. Many software packages

have “kriging” routines, and kriging is the core of many contemporary graduate level

courses on spatial statistics. Much of the terminology common in spatial statistics

today first arose within the field of geostatistics.

Kriging can be viewed as arising under a linear mixed model (LMM), which have

been intensively studied and have a well developed theory. Thus, understanding the

basics of conventional mixed models is helpful for understanding spatial statistical

models. In fact, it can be argued that the LMM perspective is natural since LMM’s

are widely used in biological, medical and epidemiological fields, particular in relation

to longitudinal data, of which which spatial data are a special case. When viewed

from a LMM perspective, estimation and prediction of spatially correlated processes

poses no additional complexity beyond that required for LMMs. This is in contrast

to conventional developments of kriging, where these problems were derived inde-

pendently, essentially outside of the field of statistics. Because of this, many ad hoc

procedures exist within the geostatistical paradigm, and the terminology is cluttered

with jargon. Conversely, linear mixed models are well-known to both statisticians

and practitioners of statistics alike, and so this formulation is often simpler as an

introductory framework. An additional benefit of the LMM development is that ex-

tension to non-Gaussian problems is straightforward by way of the generalized linear

mixed model (GLMM) extension of the normal, linear case. The discipline of disease

mapping makes widespread use of GLMMs within a spatial modeling context.

This article focuses on Gaussian spatial models as considered from a LMM ap-

proach, along with classical and Bayesian estimation issues. An important part of

such modeling is related to the specification of realistic covariance structures, and so

a discussion of this topic is included as well. We consider extensions to non-Gaussian

spatial models, as well as multivariate and spatio-temporal processes. Finally, we

present some topics in which there is substantial current research interest. Compu-

tational issues will be discussed as they arise.
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2 Gaussian Random Process Models

Consider a spatial process Y (s) where s ∈ D, some domain in d-dimensional Eu-

clidean space. In this article, we will only consider two-dimensional spatial processes.

Furthermore, we assume that the process Y (s) has a Gaussian (normal) distribution

with mean µ(s) and is correlated so that cy(s, s
′) ≡ cov[Y (s), Y (s′)] for some s, s′ ∈ D

where s 6= s′. We refer to such a process as a Gaussian random process or Gaussian

random field.

2.1 Linear Mixed Model Framework

The classical linear mixed model generalizes the traditional linear model to include

random effects. In the present context, we will equate the random effect to a correlated

spatial process. A common statement of the LMM is:

y = Xβ + Hα+ ε (1)

where y is an n×1 vector of responses, X and H are known matrices of independent,

explanatory, or regression variables (n×p and n× q, respectively), β is a p×1 vector

of regression coefficients or fixed effects, and α and ε are q × 1 and n × 1 random

vectors, respectively. Typically, columns of H are indicator variables, so that each

observation is associated with a particular element of α. The usual assumption on

these random effects is multivariate normality:

[
α
ε

]
∼ Gau

([
0
0

]
,

[
Σα 0
0 Σε

])
.

In many statistical problems, including spatial statistics, one often assumes inde-

pendence of the random errors, in which case Σε = σ2
ε In×n, where In×n is the n-

dimensional identity matrix. The variance component σ2
ε is measurement error vari-

ance, and may additionally include effects of small-scale spatial variability – that is,

anything unexplained by the random effect. In the field of geostatistics, σ2
ε is called

the “nugget effect”.

The application of this model to spatial settings is straightforward. Suppose that

the response vector is spatially indexed, so that y = [y(s1), . . . , y(sn)]′ for spatial

locations si, i = 1, . . . , n. Let the elements of α represent “spatial effects”, then Σα is

a q× q spatial covariance matrix where q is the number of spatial locations. In many

spatial statistical problems q = n; i.e., there is a single response observation at each

site, in which case H = In×n. This is the essence of the model used in conventional
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kriging applications. The other consideration in the context of spatial applications

is that prediction of “unobserved” data is of primary interest. This is in contrast to

most mixed-model applications, where the primary interest is in estimation of the

vectors β, perhaps the variance components σ2
α and σ2

ε , and, to a lesser extent, α.

For the model (1) note that α ∼ Gau(0,Σα) and ε ∼ Gau(0,Σε). One can think

of this model hierarchically, as

y|α ∼ Gau(Xβ + Hα,Σε) (2)

α ∼ Gau(0,Σα). (3)

The joint distribution is given by f(y,α) = f(y|α)f(α). One can obtain the marginal

distribution for y by integrating out the random effects, f(y) =
∫
f(y|α)f(α)dα,

which is easily shown in this case to be

y ∼ Gau(Xβ,Σα + Σε). (4)

Thus, the marginal model (4) follows from the hierarchical formulation (2) and (3).

In traditional LMM applications (e.g., longitudinal analysis) it is often convenient

(and arguably more general) to proceed in terms of the marginal model, without the

need for specific inference or estimation concerning the random effects. That is, one

accounts for spatial dependence but is not interested in the underlying process that

generates such dependence. However, for most traditional spatial applications, one

is interested in performing inference on the random effects (spatial process) and the

hierarchical formulation is more appropriate.

One might think of α as discrete levels of a random factor, but it is more often

regarded, in spatial problems, as a spatial random process. Instead of the discrete

multivariate normal model specification given in (1), one might instead write y(s) =
∑
j xj(s)βj +α(s)+ ε(s) and α(s) ∼ Gau(0, σ2

α), with cov[α(s), α(s′)] = σ2
αrα(s, s′), for

some correlation function rα(), thus relating observed “levels” of the random process

y with unobserved levels (those values which we wish to predict) of the spatial random

effects process, a subtle but important aspect with regard to spatial problems. The

distinction between the more traditional, vector representation (common in statis-

tics), and the “process” representation (common in geosciences) is more a matter of

tradition.
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2.2 Covariance models

The essence of spatial statistics is spatial correlation, and consequently it is impor-

tant to model this aspect of the problem adequately. Unfortunately, there are many

limitations (having to do with both data and covariance models) which make this a

difficult task. To guarantee that the covariance matrix is positive definite, the spa-

tial covariance matrix Σα is assumed to be of some parametric form, indexed by the

parameter θ (possibly a vector). To be more precise, the spatial covariance matrix is

expressed as Σα(θ). Much of the detail concerning implementation of contemporary

spatial statistics focuses on the choice of the covariance function, and estimation of

its parameters.

The covariance function describes the spatial association between the random

effect at any two locations in space, say s and s′:

cov[α(s), α(s′)] = cα(s, s′; θ).

If the variance of α is homogeneous, we may write cα(s, s′) = σ2
αrα(s, s′; θ) where

rα() is the correlation function, being scaled by the variance component σ2
α. Since

elements of α are indexed by space, the covariance function allows one to “fill-in”

the elements of Σα(θ). Thus, given cα, spatial parameters θ, and any two locations

in space, s and s′ (sample locations, or not), the covariance between α(s) and α(s′)

may be determined.

Typically, assumptions are imposed on the process to facilitate estimation of pa-

rameters (as will be discussed further below), but also because there is a severe

shortage of more general covariance models. The two usual assumptions are second-

order stationarity and isotropy, the former being translation invariance of the second-

moment structure of α, and the latter being rotation invariance. Normally the sta-

tionarity assumption would imply a similar constraint on the first moment structure,

but we have assumed α to have mean 0, accommodating any mean nonstationarity in

Xβ. Thus, under these assumptions, the covariance between any two points is only

a function of the distance separating them:

cov[α(s), α(s′)] = σ2
αrα(||s− s′||; θ)

where ||s − s′|| is the distance between points s and s′, say Euclidean, geographic

distance, etc.. This simplified correlation structure conveniently dictates the covari-

ance between observed and unobserved values of y for which predictions are desired, a

quantity required to formulate the predictor (discussed below). A common correlation
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model is the exponential model given by

rα(||s− s′||; θ) = exp(
−||s− s′||

θ
).

There are many other models in widespread use.

In geostatistics, spatial modeling is often considered in terms of the variogram

rather than the covariance. The variogram is an alternative description of spatial

dependence and is defined as:

2γ(h) ≡ var[α(s + h)− α(s)], (5)

for all s, s+h ∈ D, where D is the spatial domain of interest and h is some spatial lag.

Note that the variogram must satisfy the condition of conditional-negative semidef-

initeness to guarantee that all model-based variances are nonnegative. As with the

covariance function, when the process is isotropic, the variogram is only a function

of distance, so 2γ(h) = 2γ(||h||). Under the condition (5) and if the mean is con-

stant, the process is said to be intrinsically stationary. The class of processes that are

second-order stationary are a subset of those that are intrinsically stationary. In fact,

if the process is second-order stationary, then there is a simple relationship between

the variogram and the covariance function, 2γ(h) = 2[c(0) − c(h)]. In general, the

condition of second-order stationarity is sufficient for most processes of concern to the

biological and environmental sciences. Thus, the remainder of this article assumes

second-order stationarity.

2.3 Estimation and Prediction

A common method of parameter estimation under the mixed model is maximum

likelihood estimation from the marginal distribution of y. Under the simplifications

discussed above, the marginal distribution of y is:

y ∼ Gau(Xβ, σ2
αRθ + σ2

ε I).

Letting λ be the vector of second-moment parameters, (σ2
α, σ

2
ε , θ), and setting Σ(λ) =

σ2
αRθ + σ2

ε I, the log likelihood is:

l(y|β,λ) = −1

2
log(|Σ(λ)|)− 1

2
(y −Xβ)′Σ(λ)−1(y −Xβ).

To obtain parameter estimates for λ we can maximize this marginal log-likelihood

with respect to λ and β. The likelihood is nonlinear in the parameters and thus
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must be maximized numerically. The use of MLEs in spatial problems has been

questioned by some practitioners since MLEs are generally biased for the (co)variance

parameters. Consequently, restricted maximum likelihood estimation (REML) is often

recommended. This leads to less bias in plug-in kriging variances.

If λ is known, the MLE of β is

β̂ = [XΣ(λ)−1X]−1X′Σ(λ)−1y, (6)

the generalized least squares (GLS) estimate. In practice, one uses an estimate, say

λ̂, in place of λ producing:

β̂ = [XΣ(λ̂)−1X]−1X′Σ(λ̂)−1y. (7)

Both estimation of the random effects (i.e., those which coincide with data loca-

tions), and prediction of “unobserved” random effects, is based on the Best Linear

Unbiased Predictor (BLUP). One can derive the BLUP from several perspectives, in-

cluding “distribution-free”, Bayesian, and multivariate normal methods. All of these

derivations either implicitly or explicitly assume that only first and second moment

properties of the underlying spatial distribution are sufficient to describe the distri-

bution.

For estimating a vector of random effects, say say αpred, which may include ran-

dom effects corresponding to both sample locations and locations for which pre-

dictions are desired, one must compute the quantities Ω = cov[αpred,α;λ] and

Σpred = var[αpred;λ] which requires λ. The BLUP for known β and λ is

α̂ = ΩΣ(λ)−1(y −Xβ). (8)

When the vector to be predicted are those random effects corresponding to data

locations (i.e., αpred = α), then Ω = σ2
αRθ. In general, the prediction variance is

var(α̂−α) = Σpred −ΩΣ(λ)−1Ω′. (9)

Although the expressions for the predictor and its variance for known β and λ

are convenient, these quantities are seldom known. In that case, one may plug β̂ into

(8), and it remains the BLUP; the prediction variance must be adjusted accordingly

to account for the uncertainty in estimation of β. See the references for details. Ac-

counting for unknown λ is much more difficult. In practice, the estimates obtained

from MLE (or other approaches) are simply plugged into the known-λ expressions.

This is the so-called “plug-in” predictor, or the estimated BLUP (EBLUP). Unfortu-
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nately, the variance computed from an analogous plug-in procedure is not, in fact, the

correct variance of the EBLUP. In that case, the spatial prediction variance (9) un-

derestimates the true variability in the predictions since it does not take into account

the variability introduced by the estimation of the (co)variance parameters. Since the

predictor depends on λ in a nonlinear fashion, accounting for uncertainty due to its

estimation is problematic. Various approaches have been suggested to mitigate this

concern (bootstrapping, empirical Bayesian, and Bayesian methods).

2.3.1 Bayesian Estimation

The approach outlined above, in which estimation of λ is based on the marginal like-

lihood, and those estimates are plugged into the known-λ expressions for the BLUP

and its variance, is essentially what is known as an empirical Bayesian approach.

More formal Bayesian approaches may be considered, and we believe them to have

advantages for prediction in that uncertainty in covariance parameter estimation is

more easily accounted for.

Although a complete discussion of Bayesian analysis is beyond the scope of this

article, the general idea is quite simple in principle. Given a likelihood f(y|α,λ) and

prior π(α,λ), Bayesian inference is based on the posterior distribution f(α,λ|y).

Various marginal posterior distributions, that is distributions of αj|y or λi|y, are

typically used to make inferences about individual parameters or unknowns. We note

that further flexibility is obtained if we consider a fully hierarchical representation.

In that case, one notes that the joint distribution can be decomposed f(y,α,λ) =

f(y|α,λ)π(α|λ)π(λ). Thus, one can apply Bayes rule,

f(α,λ|y) ∝ f(y|α,λ)π(α|λ)π(λ), (10)

where the normalizing constant is the integral of f(y,α,λ) with respect to α and λ.

Unfortunately, the posterior distribution is often sufficiently complex so as to prevent

direct analysis (i.e., the normalizing constant integral cannot be solved analytically).

Instead, various methods have been developed which permit simulation from the

posterior distribution. Then, simulated values of the unknowns are used to estimate

the quantities of interest. One set of simulation tools falls under the category of

Markov Chain Monte Carlo (MCMC) and includes such algorithms as Metropolis-

Hastings and the Gibbs sampler. We note that a fully Bayesian analysis might also

specify a prior distribution for β as well. The advantage of the fully Bayesian approach

to LMM relative to the marginal approach is that it accounts for the variability of all
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parameters in the model. The disadvantage is the extra computational burden that

may be necessary to obtain estimates and predictions.

2.4 Markov Random Field Spatial Models

In the previous discussion, it has been assumed that the spatial process can occur at

any spatial location in some two-dimensional Euclidean space, a continuous region.

Special classes of spatial models known as Markov random fields (MRFs) have been

developed to account for the situation where the set of all possible spatial locations

is discrete (countable). We sometimes say that the collection of such sites is a lattice.

Examples include mapping disease in counties and modeling air-pollution on a grid.

The first is an example of an irregular lattice and the latter is often a regular lattice.

Regular lattices have neighborhoods that are often defined by adjoining sites and

irregular lattices often have neighborhoods defined by Euclidean proximity.

Consider a spatial process defined at n spatial locations {s1, . . . , sn}, y = [y(s1), . . . , y(sn)]′.

This process has joint distribution P [y(s1), . . . , y(sn)]. From this joint distribution,

the conditional distribution of the process at each location i can be expressed in terms

of all other sites (j 6= i) as

P [y(si)|{y(sj) : j 6= i}], i = 1, . . . , n. (11)

We then define the neighborhood Ni of the i-th site as the collection of locations such

that

P [y(si)|{y(sj) : j 6= i}] = P [y(si)|{y(sj) : j ∈ Ni}], i = 1, . . . , n. (12)

That is, the the conditional probability at site i only depends on nearby values of the

process {y(sj) : j ∈ Ni}. The specification of these conditional, neighborhood-specific

distributions must be made consistently so that the joint distribution is well-defined.

Examples of such models include auto-Gamma models for non-negative continuous

processes, auto-Poisson models for spatial counts, auto-logistic models for binary

spatial random variables, and auto-Gaussian models for spatial Gaussian processes

on a lattice.

2.4.1 Gaussian Markov Random Field Model

A natural model when the spatial process y( ) is continuous is Gaussian MRF model.

The conditional models (12) are Gaussian with,

P [y(si)|y(Ni)] =
1√

2πσi
exp[− 1

2σ2
i

{y(si)− µ(si)−
∑

j∈Ni
cij[y(sj)− µ(sj)]}2], (13)
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where cijσ
2
j = cjiσ

2
i , cii = 0, cik = 0 for k not in Ni, and µ(si) ≡ E[y(si)]. It can be

shown that the joint distribution for y is then given by

y ∼ Gau[µ, (I−C)−1M], (14)

provided (I − C)−1 is positive-definite, and where µ ≡ [µ(si), . . . , µ(sn)]′, C is an

n × n matrix with (i, j)-th element cij, and M is a diagonal matrix with σ2
1, . . . , σ

2
n

on the main diagonal.

The Gaussian MRF can easily be incorporated in the LMM framework described

previously. For example, let y = Xβ+α+ ε, where now α ∼ Gau(0, (I−C)−1M), a

MRF with zero mean. The parameters of the LMM covariance structure λ are now the

elements of C and M. In practice, the neighborhood structure of the MRF is often

simplified greatly so that the number of unknown parameters is reasonable small.

For example, a typical assumption is that only those neighbors that are immediately

adjacent to a given location are necessary to specify the conditional distribution; this

is often referred to as a first-order dependence model.

Although data often arise in what may be viewed naturally as continuous space,

one may parameterize the underlying spatial process as a discrete-space MRF. This

is a natural formulation when a convenient stratification scheme can be specified,

where “within-strata” measurements are assumed to be independent conditional on

the stratum effect. In this case, one would express the model as y = Xβ + Hα + ε

where H associates each datum with one of the discrete strata. Thus, MRFs may be

useful regardless of whether or not the data actually have discrete spatial support.

We note that for the Gaussian MRF model, the spatial dependence is specified

through the conditional distributions (13) and ultimately the inverse covariance ma-

trix (I − C)−1M. This is in contrast to the continuous Gaussian random field case

where one specifies the covariance matrix directly (not its inverse). There are some

computational advantages to the MRF approach in many practical situations due to

the sparcity of the inverse covariance matrix. Furthermore, in the Bayesian setting,

one can make use of the conditional distributions in efficient MCMC algorithms.

3 Non-Gaussian Random Process Models

The linear mixed model presented above may be considered free of formal distribu-

tional assumptions (which is the usual kriging development). That is, first and second

moment assumptions alone lead to the same estimators and predictors for parame-

ters and random effects as if the processes were assumed to be Gaussian. Thus, such
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approaches may be viewed as having an implicit assumption of normality.

Such informality leads to ambiguity in applying the basic linear mixed model ap-

proach when there is a strong belief as to the distribution of the random variable

under study, other than Gaussian. For example, count data are common in many

biological, ecological, and epidemiological problems. In such problems, there are usu-

ally discernible mean-variance relationships, and the variable is clearly discrete and

positive valued. It is natural to consider Poisson and Binomial models in these situa-

tions, and treatment in the usual LMM/kriging context will lead to some inefficiency

in both estimation and prediction. Similarly, many problems in the atmospheric and

environmental sciences involve positive-valued variables, often right-skewed, again

with strong mean-variance relationships. In this case, the log-normal distribution is

a natural candidate for a model-based analysis, though other possibilities exist (e.g.,

Gamma).

3.1 Generalized Mixed Model Framework

Non-Gaussian spatial problems may be formally analyzed within the context of gener-

alized linear mixed models (GLMM). Formulation of a GLMM requires specification

of the likelihood of the random variable y(s). As in classical generalized linear models

(GLMs), there is a so-called canonical parameter corresponding to the distribution,

which is nominally a function g( ) (the link function) of the location parameter for the

distribution. It is this quantity that is assumed to be linear in the explanatory vari-

ables. In the classical formulation of GLMs containing only fixed effects, g(µ) = Xβ,

where X is the matrix of explanatory variables. To incorporate a spatial process, we

assume y(si|α) is conditionally independent for any location si with conditional mean

E[y(si)|α] = µ(si). Then, the spatially correlated random effect is incorporated into

the linear predictor:

g(µ) = Xβ + Hα+ ε (15)

where the additional noise term ε may or may not be included, depending on the

application. Nominally, such an error term accommodates over-dispersion relative to

the mean-variance relationship implied by the distribution under consideration. As

before, α ∼ Gau(0,Σα(θ)) and ε ∼ Gau(0, σ2
ε I), with spatial correlation parameter-

ized by θ in Σα(θ).
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3.2 Spatial GLMM Estimation and Prediction

As with the LMM and GLM, one would like to use maximum likelihood methods

to obtain parameter estimates. In the GLMM case, high-dimensional integration is

generally required to evaluate the likelihood – the random effects must be integrated

from the conditional likelihood f(y|α). Although in simple random effects models,

this is possible using standard numerical procedures, it is not practical for spatial

problems.

Due to the difficulties of implementing traditional likelihood methods, other ap-

proaches have been considered. These include generalized estimating equations (GEE),

penalized quasi-likelihood methods, and conditional likelihood methods. For the most

part, these methods are essentially distribution free and do not require explicitly spec-

ification of the covariance structure of the random effects (spatial process). Although

in many cases such methods work well for getting unbiased (or nearly so) and rea-

sonably efficient parameter estimates, they typically are not as useful for prediction

of the random effects. This is problematic in spatial data problems, where spatial

prediction is often the primary interest. For that reason, the preference in spatial

problems has traditionally been Bayesian estimation. As discussed previously, the

popularization of MCMC methods has allowed the implementation of such models.

The Bayesian approach for GLMMs is illustrated in the following example.

3.2.1 Spatial GLMM Example: Mapping Bird Counts

Many biological studies give rise to spatially indexed count data, typically involving

counts of organisms at a collection of survey locations. Objectives are varied, but

may simply involve mapping abundance, or assessing the relationship of abundance

to covariates which describe habitat and landscape structure.

We consider data collected as part of the annual North American Breeding Bird

Survey (BBS). This survey is conducted in May-June of each year. Volunteer ob-

servers traverse a roadside sampling route containing 50 stops. At each stop, the

observer records the number of birds (by species) seen and heard. There are sev-

eral thousand BBS routes in North America. We focus on mourning dove (Zenaida

macroura) counts from 103 routes in the state of Pennsylvania. Let y(s) be the total

count of doves on the BBS route centered at s (aggregated over the 50 stops). Our

goal is to produce a map of dove relative abundance within the state.

For large counts, one might consider applying standard Gaussian spatial process

models (i.e. kriging). However, this ignores the positive support of y(s), and the
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fact that BBS data typically exhibit strong mean-variance relationships common in

count data, such as might be explained by a Poisson distribution assumption on y(s).

A transformation can be used to account for the latter phenomenon. Instead of the

Gaussian kriging model applied to y(s), one might apply that model to log(y(s)) (so-

called log-normal kriging). With this approach however, zeros are problematic, and

the more appropriate Poisson mean-variance linkage is disregarded. Consequently,

modeling and prediction within the Poisson framework is preferred.

Following the GLMM framework described previously, we first specify a model for

y(s) conditional on the Poisson mean λ(s):

y(s)|λ(s) ∼ Poisson(λ(s)).

Then, we employ a Gaussian spatial process model to describe spatial variation in

λ(s). The log-link is the canonical link for the Poisson distribution. Thus, defining

u(s) ≡ log(λ(s)), we specify a normal model for u(s) conditional on the spatial process

α(s):

u(s)|α(s) ∼ Gau(µ+ α(s), σ2
ε ).

Here, µ is the mean, which may be generalized to accommodate interesting covariates,

and σ2
ε serves to account for over-dispersion relative to the Poisson assumption. This

over-dispersion arises from several sources – notably, “observation error” (i.e. not all

observers are equally competent) and “small-scale variation”, such as may arise from

local (i.e. within-route) variation in habitat structure and so forth. Finally, we specify

α(s) to be Gaussian with mean 0, variance σ2
α, and correlation function rα(s, s′; θ).

As usual, one may consider many correlation models. We specify rα(s, s′; θ) to be the

single parameter exponential model: rα(s, s′; θ) = exp(−||s− s′||/θ) where θ controls

the rate of decay in correlation as distance between sites increases.

Estimation of the parameters µ, σ2, σ2
α, and θ, and prediction of α(s) at sampled

and/or unsampled routes is easily carried out within a Bayesian framework using

MCMC techniques. We first must specify prior distributions for the parameters µ,

σ2, σ2
α, and λ with prior distributions. We used conventional “flat” priors for this

purpose with the exception of θ. For this parameter, we specified a discrete uniform

distribution on 400 equally spaced values in (0, 8) on log(θ). Other details, including

those on implementation of the MCMC algorithm may be found in the references.

A map of α(s) was created by estimating the posterior mean on a grid of points

over the region (Figure 1, top panel). Uncertainty is quantified with the posterior

standard deviations (not shown). Of more general interest are the corresponding
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quantities on the natural count scale. That is, the expected number of birds, λ(s), and

its standard deviation. Estimation of these quantities is easily enough accomplished

within the MCMC framework. Maps of both quantities are shown in Figure 1 (middle

and bottom panels). The dominant feature apparent in these maps is the strong

relationship between the predicted mean, and its standard deviation – a consequence

of modeling within the Poisson framework.

4 Multivariate Spatial Models

In environmental and biological studies, it is seldom the case that measurements are

made on a single variable. For example, most air pollution monitoring networks collect

data on several pollutants in addition to relevant covariates such as temperature and

precipitation. The breeding bird survey described in the previous example produces

counts on over 200 species of birds, many of which have similar habitat and resource

requirements. It stands to reason that relationships exist among these variables, and

these relationships should manifest themselves in the joint spatial structure of the

variables.

The most obvious benefit of having multiple spatial variables is the use of a covari-

ate to aid in prediction of a primary variable. For example, temperature is informative

about ozone concentration. At the same time, temperature data is more abundant

and cheaper to collect. Consequently, more efficient prediction of ozone concentra-

tion may be achieved by inclusion of the relationship between ozone and temperature

within a bivariate spatial model. In the context of bird monitoring, some species

are difficult to observe and thus it is difficult to construct precise maps of abun-

dance without the aid of additional information. Habitat data, or information on the

abundance of similar species can serve this purpose.

The need to incorporate inter-dependence among two or more spatial variables

gives rise to several strategies for modeling spatial dependence. For the most part,

these are straightforward extensions of univariate methods and thus, much of that

material applies in the multivariate setting.

4.1 Cokriging

The most common multivariate procedure, often referred to as cokriging, involves

direct specification of the joint variance-covariance structure among a set of variables.

In the bivariate case, with variables y1(s) and y2(s), the cokriging model can be
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formulated as a joint-normality assumption on the response vectors y1 and y2:

(
y1

y2

)
∼ Gau

((
µ1

µ2

)
,

(
Σ1 Σ12

Σ12 Σ2

))
.

Here, the mean vectors µ1 and µ2 may be related to regression variables in the usual

manner. As before, the marginal covariance matrices are defined as Σ1 = σ2
1Rθ1

and Σ2 = σ2
2Rθ2 , where the correlation matrices Rθ1 and Rθ2 are parameterized by

correlation functions r1(s, s′; θ1) and r2(s, s′; θ2). These may be chosen to be of the

same parametric form, with different parameters, or of different parametric forms.

Similarly, the cross-covariance matrix Σ12 = σ12Rθ12 , where σ12 is the covariance

between y1(s) and y2(s) and Rθ12 is the cross-correlation matrix. The key to the

cokriging model is specification of a cross-correlation function corr[y1(s), y2(s′)] =

r12(s, s′; θ12) used to parameterize the matrix Rθ12 .

In general, estimation and prediction under this model proceeds as in the univari-

ate case. That is, parameter estimation based on MLE (or other methods) from the

joint model, and then use of a plug-in procedure where these estimates are substi-

tuted into the expressions for the BLUP and its variance. Regarding y = [y′1,y
′
2]′

as the data vector, the formulae and associated discussion given in Section 2.3 apply

here. Note however, that we have not given the “conditional on α” development of

cokriging here, as the joint distribution specification is conventional. However, the

expression for the BLUP of αpred in Section 2.3 is equivalent to that for predicting

values of y.

There is some practical difficulty in specifying the marginal and cross-correlation

functions so that the resulting joint variance-covariance matrix is valid in the sense

of being positive-definite. Imposing this constraint on arbitrary functions and their

estimates is not a simple matter. Indeed, in many applications the correlation func-

tions appear to be estimated more or less independently of one another, which does

not guarantee that the resulting estimates are valid. Occasionally, the ad hoc practice

of a posteriori “checking” that resulting estimates yield positive definite covariance

matrices is done. More formal approaches such as specifying the covariance functions

to be scaled versions of the same basic model, forming linear combinations of multi-

ple covariance functions, where the coefficients satisfy certain constraints, and even

nonparametric approaches, exist to remedy this difficulty.
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4.2 Hierarchical Models

Notwithstanding the difficulty in constructing valid joint variance-covariance mod-

els, cokriging becomes unwieldy when several variables are considered. In addition,

specification of the various cross-correlation functions is awkward and typically lit-

tle scientific basis exists to guide construction of the joint second-moment model.

Cokriging is essentially an empirical approach. Alternatively, one may construct a

joint model for two or more variables by construction of a sequence of conditional

models (the hierarchical approach). Sticking to the bivariate case for simplicity, a

simple hierarchical specification of the bivariate model consists of the following two

components:

y1|y2 ∼ Gau(µ1 + βy2, σ
2
1.2Rθ1.2)

and

y2 ∼ Gau(µ2, σ
2
2Rθ2).

As usual, one must specify correlation models for Rθ1.2 and Rθ2 , but there is no

cross-correlation term. Instead, the cross-correlation between the two variables is ac-

commodated in the conditional mean of y1 via the regression parameter β. General

parameterizations of this conditional mean may be considered. The point is that, un-

der this model, one avoids having to model the cross-correlation function explicitly,

thereby avoiding difficulty in specifying models which produce valid joint variance-

covariance structures. It is easy to show that the implied joint variance-covariance is

valid, assuming that the correlation models used to construct the conditional corre-

lation matrices are.

The hierarchical formulation is particularly useful when there is a mechanistic

basis for the conditioning, such as causal relationship between y1 and y2. However,

there need not be scientific basis — the model is valid regardless. Consequently, this

strategy may be viewed as a convenient framework for building valid joint models.

Conditional models are naturally fitted, and perhaps more easily so, within a

Bayesian framework. Higher order hierarchical models are also straight-forward to

analyze, but require additional regression terms in the conditional stages. Often,

science might suggest independence among some of the variables, thus simplifying

the problem considerably.

Also, the conditioning on observed variables need not be explicit. Instead, one may

construct models conditional on latent (that is, unobserved) variables, and model the

latent structure separately. This is convenient when there are a large number of

variables, but which may be explained by a smaller-dimensional spatial process.
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5 Spatiotemporal Models

Spatiotemporal processes are ubiquitous in the biological sciences. In principle, mod-

els for such processes are relatively easy to formulate in the traditional LMM or

GLMM framework. However, a lack of understanding of the underlying processes

and the “curse of dimensionality” make the implementation of these models challeng-

ing.

Consider a spatiotemporal process y(s; t) defined for s ∈ Ds, t ∈ Dt, where Ds

and Dt are spatial and temporal domains, respectively. The domains may be con-

tinuous or discrete, but we typically consider Dt a discrete collection of times (e.g.,

Dt = {t1, t2, . . . , tT}). In the remainder of this section, we will assume the discrete

temporal domain. We may then formulate the spatiotemporal process as a GLMM,

where f(y(s; t)|α) is a conditionally independent distribution for all s and t, and

where α(s; t) is a spatiotemporal random process such that α ≡ [α′1 . . . α
′
T ]′, where

αt ≡ [α(s1; t), . . . , α(sn; t)]′ and α ∼ Gau(0,Σα). Note that Σα is an (n+T )×(n+T )

covariance matrix with elements cα(s, s′, t, t′) = cov[α(s, t), α(s′, t′)]. Clearly, if n or

T is large, this matrix will be very large. Thus, although easy to formulate, the limi-

tation with this approach is that the known class of realistic and valid spatiotemporal

covariance functions, cα, is very small and the dimensionality of the joint spatiotem-

poral process α is prohibitively large. One alternative is to further factorize the

joint spatiotemporal distribution for α as a series of conditional models. For many

processes, a dynamical factorization based on a Markov assumption in time is appro-

priate. That is,

f(α) = f(α0)
T∏

t=1

f(αt|αt−1,θ), (16)

where the conditional distributions f(αt|αt−1,θ) depend on a collection of parame-

ters θ that describe the dynamical evolution and the variance/covariance structure

of the associated spatial noise process. For example, a conditional model might

follow a first-order vector autoregressive model such as αt = Hθαt−1 + ηt, where

ηt ∼ Gau(0,Ση(θ)), is the spatial noise process, and Hθ is a collection of parameters

that describe the evolution of the α process (i.e., vector-autoregression parameter ma-

trix). One can implement such a model in a Kalman filter framework. However, when

the number of spatial locations is large, the number of parameters in Hθ may prohibit

likelihood-based estimation procedures. In some cases, one may have scientific knowl-

edge that suggests relatively simple parameterizations of Hθ. Alternatively, one can

model Hθ in a hierarchical fashion, by specifying its distribution, or the distribution
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of the parameters θ. This is ideally suited for a Bayesian inference approach. The

Bayesian hierarchical methodology is very flexible and can accommodate a wide-range

of complicated spatiotemporal processes.

6 Computation

Implementation of linear mixed models is possible on most of the standard statistical

software packages and some specialized programs. These packages can be very useful

for relatively simple spatial problems, and have the advantage of synergism with other

statistical methods contained in the particular package. However, these packages

typically assume relatively simple spatial models (e.g., isotropic and stationary) and

are difficult to implement in dense and/or extensive prediction domains. This is

even more pronounced in the context of generalized linear mixed models. Thus, for

”complicated” spatial processes or high-dimensional prediction applications one often

must write custom software for a particular application. For example, we note that

although there is growing interest in spectral-based non-stationary spatial models

(discussed in the next section), these approaches have not been implemented in the

traditional statistical software packages.

6.1 High-Level or Low-Level Language

Practitioners typically favor either so-called ”low-level” programming language im-

plementations (such as C, C++, FORTRAN) or ”high-level” languages (such as S,

R, MATLAB, GAUSS). Although preference for one over the other is often an issue

of familiarity, there are distinct advantages to each. For example, the ”high-level”

languages are often matrix-oriented and as such are very efficient when it comes to

matrix calculations, but inefficient for loop-intensive programs. Conversely, the low-

level languages are very efficient when it comes to traditional programming structures

such as loops but often less efficient for matrix-oriented calculations.

Many practitioners have found that combinations of high- and low-level languages

work best for implementation of complicated spatial models in practice. In most cases,

prototype algorithms and test cases are most efficiently implemented in a matrix-

oriented language. When one is satisfied with the code, one may then translate the

matrix-oriented program to a low-level language for ”operational” implementation.

In addition, many practitioners use the high-level language as a computational ”shell”

and then call low-level routines for portions of the code that are less efficient.

Of course, there are significant differences between the various matrix language
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programs as well. Again, preference seems to follow familiarity. However, there are

some differences that can influence the choice. The authors are most familiar with R

and MATLAB and thus will limit comments to those environments. R, being designed

as a statistical language from the start, is ideal if one is considering multiple statistical

analyses for a particular application. MATLAB, a more general purpose language,

does not have the statistical functionality of R. However, MATLAB incorporates

sparse data structures in a nearly seemless fashion, whereas R does not have sparse

functionality built in (at the time of this writing). In many spatial problems for high-

dimensional processes, sparse formulations abound out of necessity. In those cases, it

is often impossible to implement a model in R due to matrix storage requirements,

but with the sparse structures of MATLAB, it might be relatively simple.

6.2 Bayesian Computation

Many of the advances in spatial and spatio-temporal modeling have been due to the

application of MCMC techniques to Bayesian formulations. Although there are ever

improving Bayesian software packages (e.g., Bayesian inference Using Gibbs Sampling,

“BUGS”), and likely to be more in the near future, many problems still require model-

specific implementations. The issues raised in this context are much the same as

discussed above.

6.3 Geographic Information Systems

Geographic Information Systems (GIS) are a common platform for analyzing and dis-

playing spatial data, and many biologists are familiar with GIS technology. However,

there is often a perception within the community of GIS users that GIS problems are

not statistical problems. Instead, GIS is used more often for describing or displaying

spatial data, and not statistical modeling. There are several reasons for this. First,

there is a lack of spatial statistical modeling functionality in most GIS packages, par-

ticularly that which is useful for modeling very large spatial data sets. Moreover,

there is uncertainty as to what constitutes ”data” within a GIS environment. GIS

”data layers” often result from applying one or more procedures to data collected

from some sampling procedure (”true data”). Often, these intermediate procedures

are essentially statistical models but emphasis is on producing a map, and not rig-

orous development or application of the procedures that transform true data to GIS

data layers. Indeed, some of these procedures are in fact spatial statistical in origin

(kriging and other smoothing techniques), but formal model fitting and assessment
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activities are deemphasized in their application. An important barrier to the syn-

thesis of GIS and spatial statistical modeling is that GIS users often have little or

no interest in quantifying uncertainty about map predictions, or they are unsure of

how to apply uncertainty estimates. Having been shown a map of predictions and

model-based standard errors displayed in a GIS environment, a colleague commented

on the standard error map: ”What do I do with that? I only need to know how much

is out there.” This sentiment is endemic within the GIS community, and its root cause

is the lack of exposure to or understanding of spatial statistical methods within the

GIS-user community, and the failure of the statistical community to articulate both

the meaning and utility of error-qualified prediction.

6.4 Technology

Although it is folly to predict the future of computational technology, one can safely

assume that computing and storage power will increase dramatically in the near fu-

ture. Many of the issues discussed above may lose some relevance. However, typically

as the technology improves, modelers attempt ever more complicated implementations

that test the limits of the current technology. Thus, the general concerns raised above

are likely to be relevant for some time. Of course, software development is not static

and the advantages of various software packages and implementations will change

dramatically. Practitioners should continue to experiment with different packages to

find ever more efficient implementations.

One area that has been under-utilized in statistics in general, and spatial statistics

in particular, is parallel processing. With the increasing reliance on computationally-

intensive methods, there is likely to be increasing need to explore parallel algorithms

for these problems. There is significant need for research in this area.

7 Future Directions

The statistical analysis of spatial data has made tremendous progress in recent years.

There remain several areas of vigorous research interest. Some of these are outlined

below.

7.1 Nonstationary Spatial Processes

Classical spatial analysis typically requires that the spatial process be stationary so

that parameter estimation can be accomplished. However, it is unrealistic to expect
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that spatial processes one might encounter in the biological sciences be stationary.

That is, the spatial dependence structure may be very different in different regions of

the spatial domain. In situations where one has large amounts of spatial data and/or

replications, several approaches can be used to model nonstationary covariance struc-

tures. The most promising approaches appear to be those based on morphological

transformation, spectral models, and process-convolution models.

In the transformation approach one finds an appropriate warping of physical space

such that the nonstationary process in physical space is stationary in the transformed

space. These approaches work well in relatively small problems but are limited in that

they are extremely computationally demanding in large problems.

The spectral approach is also transformation-based, but in this case one simply

models the process in spectral space, that is, after performing a spectral decom-

position. For example, one might model the n-dimensional spatial process α ∼
Gau(0,Σα) as α = Ψa, where Ψ is an n × m matrix of spectral basis functions,

and a is a m × 1 vector of spectral coefficients such that α(si) =
∑m
j=1 ψj(si)aj for

i = 1, . . . , n and j = 1, . . . ,m. Although typically m = n, in some situations it may

be that the spectral decomposition also suggests dimension reduction and m < n.

The spectral coefficients have the distribution a ∼ Gau(0,Σa). If the basis functions

are orthogonal, one can write a = Ψ′α and then Σa = Ψ′ΣαΨ. One has flexibility

in choosing the basis functions (e.g., Fourier basis functions, orthogonal polynomi-

als, empirical orthogonal functions, or wavelets). Depending on the choice, the basis

functions have the added effect of being a decorrelator, so that the structure of Σa

is much simpler than Σα. Perhaps more importantly, such specifications can easily

lead to non-stationary covariance functions. These spectral decompositions can also

be included in fully Bayesian analyses and, if chosen properly, can lead to efficient

Bayesian computation in large spatial domains.

The process-convolution approach is also inherently a spectral approach, but need

not be written that way. In this approach one notes that the Gaussian spatial process,

y(s) can be written as a spatial moving average,

y(s) =
∫
k(s− u;θ)γ(u)du, (17)

where k(s − u;θ) is a convolution kernel that depends on parameters θ and γ(u) is

a Gaussian white noise process. One can show that such processes imply valid sta-

tionary spatial covariance models. It follows that if one allows the convolution kernel

to vary with space, then the implied covariance function is nonstationary. That is,

let k(s − u;θs), for all s in the spatial domain of interest. Typically, one specifies
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a slowly varying process for θs and considers a hierarchical Bayesian implementa-

tion. One must be careful that the kernel parameter model is relatively simple lest

one replace a univariate spatial problem with an equally complicated multivariate

problem.

7.2 Multivariate Non-Gaussian Formulations

The ability to implement non-Gaussian spatial models is relatively recent, primar-

ily because the computational tools necessary to implement them are relatively new.

Perhaps the greatest frontier in spatial modeling in the near future will be modeling

spatial systems. That is, multivariate processes, some of which may be non-Gaussian.

Such models are essential for understanding complicated biological systems. For

example, consider the problem of predicting the abundance of waterfowl over a con-

tinental scale six months to a year in advance. Such a model would have to consider

seasonal to annual climate predictions of sea surface temperature, relate these predic-

tions to climatological variables such as precipitation and temperature, which must

then be related to habitat, and eventually waterfowl abundance. Each component

of such a model is potentially a very complicated spatial or spatiotemporal process,

typically non-Gaussian. Each subprocess has associated uncertainties in the data,

knowledge of the process, and the statistical model. Thus, any reasonable modeling

strategy must be able to account for these uncertainties. The hierarchical Bayesian

linkage of GLMM formulations provides such a framework.
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Figure 1: Results from MCMC analysis of BBS mourning dove counts. Top panel:
Spatial random effect posterior mean at grid locations. Middle panel: Posterior mean
map of expected route counts at the grid locations. Bottm panel: Prediction standard
errors of expected route counts at grid locations. Route locations are indicated with
“X”.


