Estimation of Parameterized Spatio-Temporal Dynamic Models

(Bill) Ke Xu
Joint work with Dr. Chris Wikle

Department of Statistics
University of Missouri – Columbia
Spatio-temporal dynamic Models

- A state-space model setup
- Data model $z_t = K_t y_t + \varepsilon_t$ where $\varepsilon_t \sim MVN(0, R_t)$ and K_t is known 0-1 matrix relating data z_t to underlying process y_t.
- Process model $y_t = H_\theta y_{t-1} + \eta_t$ where $\eta_t \sim MVN(0, Q)$ and H_θ is unknown parameterized transition matrix.
- Parameter of Interest: $\Theta = \{R_t, Q_t, H_\theta\}$ to be estimated by General Expectation-Maximization (GEM) algorithms.
- Ultimately want to know $y^s_t = E(y_t|z_1 \ldots z_s)$ and its associated variance $P^s_t = var(y_t|z_1 \ldots z_s)$. In particular, y_{t-1}^t, y^t_t, y^T_t are called predicted, filtered and smoothed values, respectively.
Kalman Filter and Smoother

- For an overview, see Shumway and Stoffer 2000
- Used for state-space models
- Given Θ, Kalman Filter is an iterative algorithm to obtain $\mathbf{y}_t^{t-1}, \mathbf{y}_t^t$ and the associated variance matrices $\mathbf{P}_t^{t-1}, \mathbf{P}_t^t$, respectively for $t = 1 : T$.
- Given Θ, Kalman Smoother is an iterative algorithm to obtain \mathbf{y}_t^T and its variance matrix \mathbf{P}_t^T.
EM for state-space models (Shumway and Stoffer 1982)

- Provides an iterative method of estimating Θ for state-space models
- Consider $\{z_1, \ldots, z_T; y_0, y_1, \ldots, y_T\}$ as ”complete data”
- Consists of two steps : E-step and M-step
 - E-step : Compute $g(\Theta)$, the expected value of log likelihood of complete data given $\{z_1 \ldots z_T\}$ and $\Theta^{(j-1)}$
 - M-step : Obtain $\Theta^{(j)}$ by maximizing $g(\Theta)$
- Continue until $\Theta^{(0)}$, $\Theta^{(1)}$, $\Theta^{(2)}$. . . converges.
EM continued

• Shumway and Stoffer 1982

• Provides explicit updating formula (for unrestricted parameters):
 at j^{th} iteration,

 \[- \mathbf{H}(j) = \mathbf{S}_{10}\mathbf{S}_{00}^{-1} \]

 \[- \mathbf{R}(j) = \frac{1}{T}\mathbf{B} \]

 \[- \mathbf{Q}(j) = \frac{1}{T} (\mathbf{S}_{11} - \mathbf{S}_{10}\mathbf{S}_{00}\mathbf{S}'_{10}) \]

where \mathbf{S}, \mathbf{B} are computed from Kalman filter and smoothing output.
Standard Error (SE) of EM Estimates

- Boostrapping state-space model e.g., Stoffer and Wall 1991, 2004
- The numerical approach. The Hessian can be approximated by
 \[
 \frac{\partial^2 \log L(z; \Theta)}{\partial \theta_i^2} \approx \log(z; \tilde{\Theta} + \Delta_i) - 2 \times \log L(z; \tilde{\Theta}) + \log L(z; \tilde{\Theta} - \Delta_i)
 \]
 where \(\Delta_i \) is a zero matrix (or vector) except for the \(i^{th} \) position which is 0.01.
- The SE of \(\theta_i \) can be approximated by
 \[
 SE(\theta_i) = \sqrt{\left(-\frac{\partial^2 \log L(z; \Theta)}{\partial \theta_i^2}\right)^{-1}}
 \]
General EM (GEM)

• More general than EM; Same E-step; M-step is different
• At M-step, only requires $g(\Theta)$ increases in value, thereby increasing likelihood value
• Useful when closed form M-step update is hard to obtain.
• Cost to be paid: longer iteration time.
• Two algorithms particular useful for us: ECM and ”GEM based on One Newton-Raphson Step”
GEM: Expectation-Conditional Maximization (ECM)

- Partition Θ into, say, two parts Θ_1 and Θ_2.
- Update Θ_1 and Θ_2 sequentially or conditionally.
- First, update Θ_1 while holding $\Theta_2 = \Theta_2^{(j-1)}$ by maximizing $g(\Theta_1, \Theta_2^{(j-1)})$ over Θ_1.
- Second, update Θ_2 by maximizing $g(\Theta_1^{(j)}, \Theta_2)$ over Θ_2.
GEM based on one Newton-Raphson Step

- Consider $\Theta = [\theta; \bar{\Theta}]$. Goal: to update θ.
- $\theta(j) = \theta(j-1) + a(j-1)\delta(j-1)$ where $\delta(j-1) = [\frac{\partial^2 g(\theta)}{\partial \theta^2}]_{\theta=\theta(j-1)}^{-1} \left[\frac{\partial g(\theta)}{\partial \theta} \right]_{\theta=\theta(j-1)}$
 and $0 < a(j-1) \leq 1$
- When near the maximum, $a(j-1) = 1$ will suffice (also known as EM gradient by Lange 1995).
- This algorithm can be embedded in ECM.
Parameterization of Θ

- Updating formula are derived using symbolic matrix calculus. See "Vector Differential Calculus in Statistics" by M. P. Wand 2002
- See my paper for update formula.
- R_t (variance matrix of measurement error)
 - Simple measurement error: $R_t = \sigma^2 \varepsilon I_t$
 - Measurement error plus some structure: $R_c = c I_t + \sum_{i=1}^{I} \lambda_i A_i$
 where $c > 0$, $A_i A_j = 0$, $\lambda_i \geq 0$ and A_i are known symmetric and idempotent matrices. Only unknown parameter is the scalar c. This parameterization is suitable for dimension reduction case.
Parameterization Cont’d

• **Q** (variance matrix of model error)
 – Unrestricted case
 – Diagonal matrix: \(Q(\theta) = \text{diag}(\theta_1, \ldots, \theta_n) \)
 – Spatial Lattice, Conditional Autoregressive (CAR) Model, \(Q(\delta, \rho) = \delta(I - \rho C)^{-1} \)
 – Exponential Covariogram \(Q(\sigma^2_\eta, \theta) = \sigma^2_\eta C(\theta) \)

• **H** (transition matrix)
 – unrestricted case
 – \(H = H(0, \lambda) \), where \(\lambda = (\lambda_1, \ldots, \lambda_m) \) , i.e., the entry of \(H \) is either 0 or \(\lambda_i \)
Example: Palmer Drought Severity Index (PDSI)

- Monthly data 1/1900 - 12/1997
- 107 locations in central USA
- values: -6 (dry) to +6 (wet)
- Left figure: dark circle = dry; open circle = wet; size \propto magnitude
- Left figure: 1st column = data for two months; 2nd column = 1-month ahead prediction for these two months based on our model
EOFs of PDSI data

- Empirical Orthogonal Function (EOF)
- Essentially Principal Component Analysis
- Eigenvalue Decomposition of the sample covariance matrix
- First 10 EOF accounts for about 80% variability
- The next 10 EOF explains additional 10%.
Model for PDSI

• Dimension reduction: let $y_t = \Phi a_t$, where a_t is a low-dimension vector.

• $z_t = K_t \Phi a_t + \varepsilon_t$, where Φ is known $n \times K$ (EOF) basis matrix and $\varepsilon_t \sim MVN(0, R_c)$, $R_c = c \mathbf{I} + \sum_{i=K+1}^{K+k} \lambda_i \phi \phi'$.

• $a_t = Ha_{t-1} + \eta_t$, where $\eta_t \sim MVN(0, \sigma_{\eta}^2 Q(\theta))$ and Q is a diagonal matrix.

• Parameters : c, H, θ

• Use regular EM to update all parameters.
PDSI Time Series for 3 locations

- 1-month ahead prediction
- Prediction mean = red line
- 95% band = green dashed line
- Cross = data
Example: Advection-diffusion PDE

- Consider a 1-dimensional $u_t(x)$ process at spatial location x and time t, $\frac{\partial u}{\partial t} + \alpha \frac{\partial u}{\partial x} = \beta \frac{\partial^2 u}{\partial x^2}$

- Discretize: $u_t = H(\gamma) u_{t-1} + \eta_t$, where $\gamma = (\gamma_1, \gamma_2, \gamma_3)$. Furthermore, let $\eta_t \sim MVN(0, \sigma^2_\eta C(\theta))$ and θ is the (scalar) spatial dependence parameter for exponential covariogram.

- Let z_t be the observed the data vector and $z_t = K_t u_t + \varepsilon_t$, where $\varepsilon_t \sim MVN(0, \sigma^2_\varepsilon I)$

- Parameters: $\gamma_1, \gamma_2, \gamma_3, \sigma^2_\eta, \theta, \sigma^2_\varepsilon$

- Use ”One Newton-Raphson Step” to update θ and use ECM to update all parameters.
Simulated Diffusion Data

- 20 spatial locations;
- 100 time units
- 10% missing
- Goal: to recover the underlying process; so we want u_t^T
Same Diffusion Data

- Time Series Plots for two locations
- Data = Square
- Dot = Estimation
- Line = True process
Thank You!