

4. (Neyman and Scott (1948) Problem). Let $Y_{ij}, i = 1, \cdots, n, j = 1, 2$ be independent observation, from $N(\mu_i, \sigma^2)$.

(a) Find (μ_M, σ^2_M), the maximum likelihood estimate of (μ, σ^2), where $\mu = (\mu_1, \cdots, \mu_n)$.

(b) Is σ^2_M a consistent estimate of σ^2?

(c) Find an unbiased estimate of σ^2 based on σ^2_M. Is it consistent estimate of σ^2?

(d) Consider the class of prior $p_a(\mu, \sigma) = \frac{1}{\sigma^a}$, for some fixed $a \geq 0$. (This is equalent to $p(\mu, \sigma^2) \propto (\sigma^2)^{-\frac{a+1}{2}}$). Find the posterior mean of σ^2.

(e) Under the Jeffreys prior (i.e., p_{n+1}), write the posterior mean of σ^2? Is it consistent?

(f) Under the reference prior, (i.e., p_1), write the posterior mean of σ^2? Is it consistent?

5. Assume that Y_1 has Weibull (θ, β) distribution with pdf.

$$f(y|\theta, \beta) = \frac{\beta y^{\beta-1}}{\theta^\beta} \exp\{-y/\theta^{\beta}\}, \quad y > 0.$$

Here $\beta > 0$ is the shape parameter and θ is the characteristic life.

(a) Find the Fisher information matrix for (θ, β).

(b) Find Jeffreys’ prior for (θ, β).

(c) Find the reference prior for (θ, β) when θ is the parameter of interest.

(d) Find the reference prior for (θ, β) when β is the parameter of interest.

(e) Let $Y = (Y_1, \cdots, Y_n)$ be a random sample from Weibull (θ, β) and $n > 1$. Consider the noninformative prior of the form

$$p_b(\theta, \beta) \propto \frac{1}{\theta \beta^b}.$$

for some fixed $b \geq 0$. Write the conditional posterior of θ given β and the marginal posterior density of β.

1