Asymptotic properties of posterior

- Normal approximation to the posterior dist.
- When the sample size n is large enough the posterior $p(\theta \mid y)$ is often unimodal and roughly symmetric. It can be approximated by normal centered at its mode.
- Consider the Taylor expansion of $\log[p(\theta \mid y)]$ at $\hat{\theta}$ (posterior mode) (θ may be a vector, $\hat{\theta}$ is in interior)
Asymptotic properties of posterior—

\[
\log p(\theta \mid y) = \log p(\hat{\theta} \mid y) + \frac{\partial}{\partial \theta} \log p(\hat{\theta} \mid y)(\theta - \hat{\theta}) \\
+ \frac{1}{2}(\theta - \hat{\theta})\left[\frac{\partial^2 \log p(\hat{\theta} \mid y)}{\partial \theta_i \partial \theta_j}\right](\theta - \hat{\theta}) + \ldots
\]

So, \(p(\theta \mid y) \sim N(\hat{\theta}, I_n(\hat{\theta})^{-1}) \) where

\[
l_n(\theta) = -\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log p(\theta \mid y).
\]
Asymptotic properties of posterior

b) Likelihood dominating the prior dist.
In practice \(y = (y_1, \ldots, y_n) \) a random sample of size \(n \).

\[
\log p(\theta | y) = \log p(\theta) + \sum \log p(y_i | \theta)
\]

\[
I_n(\theta) = - \sum \frac{\partial^2}{\partial \theta_i \partial \theta_j} \log p(\theta | y_i) \approx nI_1(\theta)
\]

As \(n \to \infty \), the posterior mode \(\hat{\theta} \) is \(\approx \hat{\theta}_M(MLE) \)
Thus, when \(n \to \infty \), \(p(\theta | y) \approx N(\hat{\theta}_{MLE}, I_n(\hat{\theta}_{MLE})^{-1}) \)
When \(n \) is small, the prior dist. is important in the posterior computation.
Example 1

\(y_1, \ldots, y_n \sim N(\mu, \sigma^2), (\mu, \sigma^2) : \) both unknown.

\(p(\mu, \sigma^2) \propto \frac{1}{\sigma^2} \) or \(p(\mu, \log \sigma) \propto 1 \)

\(t = \log \sigma = \frac{1}{2} \log \sigma^2, \sigma^2 = e^{2t}, \frac{d\sigma^2}{dt} = 2e^{2t} \)

\[J = \begin{vmatrix} 1 & 0 \\ 0 & 2e^{2t} \end{vmatrix} = 2e^{2t} \]

\(\Rightarrow p(\mu, t) = \frac{1}{e^{2t}}(2e^{2t}) = 2 \propto 1 \)

\(\Rightarrow \log p(\mu, t|y) = \text{const.} - n \cdot t - \frac{1}{2}e^{-2t}[(n - 1)S^2 + n(\bar{y} - \mu)^2] \)

\(\Rightarrow \begin{align*}
\frac{\partial}{\partial \mu} \log p(\mu, t|y) &= \frac{n(\bar{y} - \mu)}{\sigma^2} = ne^{-2t}(\bar{y} - \mu) \\
\frac{\partial}{\partial t} \log p(\mu, t|y) &= -n + e^{-2t}[(n - 1)S^2 + n(\bar{y} - \mu)^2]
\end{align*} \)
Example 1

The posterior mode is \((\hat{\mu}, \log \hat{\sigma}) = (\bar{y}, \frac{1}{2} \log(\frac{n-1}{n} S^2))\)

\[
\Rightarrow \begin{cases}
\frac{\partial^2}{\partial \mu^2} \log p(\mu, t | y) = -\frac{n}{\sigma^2} \\
\frac{\partial^2}{\partial \mu \partial t} \log p(\mu, t | y) = 0 \\
\frac{\partial^2}{\partial t^2} \log p(\mu, t | y) = -2e^{-2t}[(n - 1)S^2 + n(\bar{y} - \mu)^2]
\end{cases}
\]

\[
\Rightarrow I(\hat{\mu}, \log \hat{\sigma}) = \begin{pmatrix}
\frac{n}{\hat{\sigma}^2} & 0 \\
0 & 2n
\end{pmatrix}
\]

\[
\Rightarrow p(\mu, \log \sigma | y) \approx N \left(\left(\begin{array}{c} \bar{y} \\ \log \hat{\sigma} \end{array} \right), \left(\begin{array}{cc} \frac{\hat{\sigma}^2}{n} & 0 \\
0 & \frac{1}{2n} \end{array} \right) \right)
\]

Given \(y\), \(\mu\) and \(\log \sigma\) are indep.
Example 1

If we write back to the parameter (μ, σ^2): given y, μ and σ^2 are indep.,

$$
\begin{align*}
\mu &\sim N(\bar{y}, \frac{\sigma^2}{n}) \\
\sigma^2 &\sim N(\tilde{\sigma}^2, \frac{2\tilde{\sigma}^4}{n+2}), \tilde{\sigma}^2 = \frac{n}{n+2} \hat{\sigma}^2
\end{align*}
$$
Counter examples to the theorem

1) Under identified model and parameters
\[
\begin{pmatrix} u \\ v \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)
\]
only one of \(u \) or \(v \) is observed for each pair \((u, v) \)
\(\Rightarrow \rho \) is nonidentified. Data contain no information on \(\rho \).
\(\Rightarrow \) posterior of \(\rho \) = prior of \(\rho \)

2) Number of parameters increasing with sample size
\(y_{ij} \sim N(\theta, \sigma^2), \ j = 1, 2, \ i = 1, \ldots, n \)
No consistent estimator of \(\theta_i \)
Counter examples to the theorem–

3) Aliasing (special case of underidentified parameters)

- Assume that $y_1, ..., y_n \ iid \sim p(y_i \mid \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \lambda)$,

$$
= \lambda \Phi(y_i\mid\mu_1, \sigma_1^2) + (1 - \lambda)\Phi(y_i\mid\mu_2, \sigma_2^2)
$$

$$
= \lambda \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp \left\{ -\frac{1}{2\sigma_1^2} (y_i - \mu_1)^2 \right\}
$$

$$
+ (1 - \lambda) \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp \left\{ -\frac{1}{2\sigma_2^2} (y_i - \mu_2)^2 \right\}.
$$

- Replace $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \lambda)$ by $(\mu_2, \mu_1, \sigma_2^2, \sigma_1^2, 1 - \lambda)$, the likelihood remains the same.
- It is (50%, 50%) of two modes.
Counter examples to the theorem—

- Improper posterior.
- Unbounded likelihood
- No limit of likelihood
 \[y_i \sim \text{Bernoulli}(p), \ p = \frac{1}{1 + e^{-(x-\mu)}} \]
 only \(x_i = 1, \)
 \[L(\mu) = \frac{1}{1 + e^{-(x-\mu)}} = \frac{1}{1 + e^{\mu-x}} \]
 \(\hat{\mu} = -\infty? \)
- Prior dists. exclude the point of convergence
- Convergence to the edge of parameter space
 \[y_1, \ldots, y_n \sim N(\theta, 1), \theta \geq 0 \]
 \(\theta = 0 \) is true value, \(\bar{y} \to 0 \)
- Tail of dist.
§4.4 Frequentist evaluation of Bayesian inference

Frequentist statistics provide a useful approach for evaluating the properties of Bayesian inference.

1. Large sample correspondence: asymptotic normality
2. Point estimation: consistency, efficiency, asymptotic unbiased
3. Confidence coverage.