1. (6.41)

(a) Measurement equivariant requires that the estimate of \(\mu \) based on \(y \) be the same as the estimate of \(\mu \) based on \(x \); that is, \(T^*(x_1+a, \ldots, x_n+a) - a = T^*(y_1) - a = T(x) \).

(b) The formal structures for the problem involving \(x \) and the problem involving \(y \) are the same. They both concern a random sample of size \(n \) from a normal population and estimation of the mean of the population.

Thus, the formal invariance requires that \(T(x) = T^*(y) \) for all \(x \).

Combining with part (a),

\[
T(x_1+a, \ldots, x_n+a) - a = T^*(x_1+a, \ldots, x_n+a) - a = T(x_1, \ldots, x_n)
\]

i.e. \(T(x_1+a, \ldots, x_n+a) = T(x_1, \ldots, x_n) + a \), for all \(x_i \).

(c) \(\bar{W}(x_1, \ldots, x_n) = x \)

\[\Rightarrow \bar{W}(x_1+a, \ldots, x_n+a) = \frac{1}{n} \sum (x_i+a) = \bar{x} + a = \bar{W}(x_1, \ldots, x_n) + a \]

So \(\bar{W}(x) \) is equivariant.

\(x_1, \ldots, x_n \sim \mathcal{N}(x \Theta) \)

\[\Rightarrow x_0 \sim \mathcal{N}(x \Theta) \quad \text{where} \quad x_0 \sim \mathcal{N}(x \Theta) \]

\[\Rightarrow E\bar{W} = \frac{1}{n} \sum (x_0+\Theta) = \Theta \], for all \(\Theta \).
2. (6.43)

(a) For location-scale family, if \(X \sim \frac{1}{\theta} f((x-\mu)/\theta) \), then

\[
Y = \delta_2 c(x) \sim \frac{1}{\sigma^2} f\left[y - \mu + \sigma c \right]
\]

so for estimating \(\sigma^2 \), \(\hat{\delta}_2 c(o^2) = \hat{\sigma}^2 \).

An estimator of \(\sigma^2 \) is invariant w.r.t. \(G_1 \) if

\[
W(cX+\alpha, \ldots, cX_n+\alpha) = c^2 W(X_1, \ldots, X_n)
\]

\[
KS_2(cX+\alpha, \ldots, cX_n+\alpha) = \frac{1}{n-1} \sum (cX+\alpha - \bar{X}_c)^2 = \frac{1}{n-1} \sum (cX+\alpha - c\bar{X} + \alpha)^2
\]

\[
= c^2 \frac{1}{n-1} \sum (X_i - \bar{X})^2 = c^2 KS_2(X_1, \ldots, X_n)
\]

So \(KS^2 \) is invariant w.r.t. \(G_1 \).

For invariance w.r.t. \(G_2 \), just take \(c=1 \) above.

For invariance w.r.t. \(G_3 \), just set \(c=0 \) above.

So \(KS^2 \) is invariant w.r.t. \(G_1, G_2, G_3 \).

(b).

\[
W(X_1, \ldots, X_n) = \phi(\frac{X_1}{\theta}) \hat{\sigma}^2
\]

1. If \(W \) is invariant w.r.t. \(G_2 \),

\[
W(cX+\alpha, \ldots, cX_n+\alpha) = \phi(\frac{X+\alpha}{\theta}) \hat{\sigma}^2
\]

If \(\theta = 1, X = 0 \) this implies \(\phi(a) = \phi(0) \) for all \(a \),

i.e., \(\phi \) must be constant.

On the other hand, if \(\phi \) is constant, \(W \) is invariant
by part (a).

So \(W \) is invariant if and only if \(\phi \) is constant.

2. Since \(G_2 \) is a subgroup of \(G_1 \), invariance w.r.t. \(G_1 \)
also requires \(\phi \) to be constant.

\[
W(X_1, \ldots, X_n) = \phi(\frac{\bar{X}}{\theta}) \hat{\sigma}^2 = \phi(\frac{\bar{X}}{\theta}). c^2 \hat{\sigma}^2 = c^2 W(X_1, \ldots, X_n)
\]
3. (7.40)
\[L(x|\theta) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} \]
\[\Rightarrow \log L(x|\theta) = \left(\frac{x_i}{\theta} \right) \log p + \left(\frac{n-x_i}{1-\theta} \right) \log (1-p) \]
\[\frac{\partial \log L}{\partial \theta} = \frac{x_i}{p} - \frac{n-x_i}{1-p} = \frac{nx_i - np + p}{p(1-p)(x-p)} \]

By Corollary 7.3.15, \(\bar{x} \) is the UMVUE of \(p \) and attains the CRLB.

4. (7.41). \(\bar{x} \sim \text{N}(\mu, \sigma^2) \)

(a). \(E(x|\bar{x}) = \frac{\sigma^2}{\bar{x}} \cdot E\bar{x} = M(x|\bar{x}) = \mu \) if \(\bar{x} \sigma = 1 \).

(b). \(\text{Var}(x|\bar{x}) = \frac{\sigma^2}{\bar{x}^2} \cdot \text{Var}(\bar{x}) = \sigma^2 \cdot \left(\frac{\sigma^2}{\bar{x}} \right) \)

So we need to minimize \(\bar{x} \sigma^2 \) with constraint \(\bar{x} \sigma = 1 \).

Use Lagrange multipliers, we have

\[L = \frac{\sigma^2}{\bar{x}} - \lambda (\bar{x} \sigma - 1) \]
\[\Rightarrow \frac{\partial L}{\partial x} = 2\sigma \bar{x} - \lambda = 0 \]
\[\Rightarrow x = \frac{\lambda}{2} \]
\[\frac{\partial L}{\partial \lambda} = 2\sigma \bar{x} - 1 = 0 \]

So \(\bar{x} = \frac{\lambda}{2} \cdot \bar{x} = \frac{\sigma^2}{\bar{x}} \cdot \bar{x} \)

has the minimum variance among all unbiased estimators of this form.
5. (7.42). \(Ew_i = 0, \ Var(w_i) = \sigma^2, \ \text{Cov}(w_i, w_j) = 0 \text{ if } i \neq j. \)

(a). \(\mathbb{E}(\frac{\partial}{\partial \alpha} \mathbb{E}(w_i)) = \alpha (\text{Var}(w_i)) \Rightarrow \frac{\alpha}{\text{Var}(w_i)} = 0. \)

\[\text{Var}(\mathbb{E}(w_i)) = \frac{\sigma^2}{\text{Var}(w_i)} = \frac{\sigma^2}{\alpha}, \text{Var}(w_i) = \frac{\sigma^2}{\text{Var}(w_i)} \]

So we need to minimize \(\frac{\sigma^2}{\text{Var}(w_i)} \) with constraints \(\sum \alpha_i = 1, \)

using Lagrange multipliers,

\[L = \frac{\sigma^2}{\text{Var}(w_i)} - \lambda (\sum \alpha_i - 1) \]

\[\Rightarrow \frac{\partial L}{\partial \alpha_i} = \frac{2 \alpha_i \sigma^2}{\sum \alpha_i} - \lambda = 0 \Rightarrow \left\{ \begin{array}{l}
\alpha_i = \frac{2 \sigma^2}{\lambda \sum \alpha_i} \\
\sum \alpha_i = 1
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
\lambda = \frac{2 \sigma^2}{\sum \alpha_i} \\
\alpha_i = \frac{\sigma^2}{\lambda \sum \alpha_i}
\end{array} \right. \]

\[\Rightarrow w^* = \frac{\sum w_i \sigma^2}{\sum \sum \alpha_i} = \frac{\sum w_i \sigma^2}{\sum \lambda \sum \alpha_i} \text{ has minimum variance.} \]

(b). \(\text{Var}(w) = \frac{\sigma^2}{\text{Var}(w_i)} \)

\[\Rightarrow \text{Var}(w^*) = \frac{\sigma^2}{\text{Var}(w_i)} \left(\frac{\sum \alpha_i}{\sum \sum \alpha_i} \right) = \frac{1}{\sum \sum \alpha_i} \]

6. (7.44). \(X_i \sim \text{iid } N(\theta, 1) \)

\[\Rightarrow \sum X_i \text{ is complete sufficient statistic.} \]

\(X^2 - \bar{X}/n \) is a function of \(X_i \). By Theorem 7.3.23,

\(X^2 - \bar{X}/n \) is the unique best unbiased estimator of

its expectation \(E(X^2) = \text{Var}(X) + (E(X))^2 = \frac{1}{n} + \sigma^2 \Rightarrow \text{Var}(X) = \sigma^2 \)

\(\text{Var}(X^2 - \bar{X}/n) = \text{Var}(X^2) - (E(X))^2 = E(X^4) - (E(X))^2 \)

\(\bar{X} \sim N(\theta, 1/n) \)

\[E(X^4) = \text{E}(X^2(X - \theta + \theta)) = \text{E}(x^2 - \theta) + \theta \text{E}(X^2) \]

\[\text{E}(X^2(X - \theta)) = \frac{1}{n} \text{E}(\text{E}(X^2)) = \frac{\theta}{n} (\theta^2 + 1) \]

(by Steen's Lemma)

\(\theta \text{E}(X^3) = \theta \text{E}(X^2(X - \theta)) + \theta^2 \text{E}(X^2) = \frac{\theta}{n} (\theta^2 + 1) \)

\[= \frac{\theta^4}{n} + \frac{\theta^2}{n} \]

\(\Rightarrow \text{Var}(X^4) = \frac{\theta^4}{n} + \frac{\theta^2}{n} + \sigma^4 + \theta^2 \sigma^2 \Rightarrow \text{Var}(X^2 - \bar{X}/n) = \frac{2 \sigma^2}{n} + \frac{\theta^2}{n} > \frac{4 \sigma^2}{n} \]

It's easy to compute \(CRB = -\frac{\theta^2}{nE(\text{Var}(X^2 - \bar{X}/n))} = \frac{4 \sigma^2}{n}. \)